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ABSTRACT

The estimation of 3D body pose and shape has always been a
challenging problem due to various reasons, such as the am-
biguity in 2D images and complex articulated structure of the
human body. In order to solve the ill-conditioned problems, in
this paper, we bring up an end-to-end method to estimate 3D
human shape and pose from multi-view RGB images. In the
proposed framework, we first implement a CNN embedded
with attention module to extract the image feature and design
the view-pooling layer to combine the features from multi-
ple views. Then we adopt a regression network with a nov-
el geometric constraint of body limbs to estimate 3D human
pose and shape. Additionally, during the training process, we
employ the idea of adversarial learning in our model to help
regress accurate pose and shape parameters. Extensive exper-
iments are conducted on Human3.6M and MPI-INF-3DHP
datasets, and our method achieves competitive results in the
3D pose and shape estimation task.

Index Terms— 3D Pose and Shape Estimation, SMPL,
Attention Mechanism, Adversarial Learning, CNN

1. INTRODUCTION

The estimation of 3D body pose and shape from RGB im-
ages is an important task in computer vision. It is a core tech-
nique in various applications, such as computer animation,
orthopedic diagnosis, activity surveillance, virtual reality and
so forth.

However, this task is difficult due to the inherent ambigui-
ty when estimating 3D information from 2D clues. In order to
erase the ambiguity, researchers have used image sequences
[1, 2], employed multi-view images [3] or adopted addition-
al information using depth cameras [4] like Kinect as inputs.
Most 3D pose and shape estimation methods employ SMPL
[5] or SCAPE [6] as basic parametric model, and adopt RG-
B images [7, 8, 9, 10, 11], depth images [4, 12], or silhou-
ettes [13] as inputs, and outputs 3D meshes. These methods
could be divided into two categories roughly: one is tradi-
tional optimization-based, which often takes RGB images as
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inputs and fits SMPL to the detected 2D keyjoints along with
various priori assumptions about the joint angles and shape
constraints, like [7] and [8]. However, the fitting process of
the optimization-based method is time-consuming due to the
slow convergence, requiring about several minutes per image
to estimate the 3D model; the other is deep-learning based.
Since convolutional neural network is widely used recent-
ly because of its high efficiency and accuracy, some work-
s have implemented CNN to estimate 3D human pose and
shape. Pavlakos et al.[10] use hourglass model to predict 2D
joints and silhouette from input image and design two CNNs
to regress pose and shape parameters. Similarly, Omran et
al.[11] first employ a CNN to generate the segmentation of
the human in the image, then use this segmentation to esti-
mate SMPL related parameters. However, the process of lift-
ing the processed 2D input to 3D estimation may lose plenty
of useful information.

In order to solve the aforementioned problems, namely,
the low time efficiency and the loss of useful information
when encoding the images to estimate 3D body pose and
shape, in this paper, we propose a novel approach to estimate
3D human pose and shape from multi-view images. Our
method mainly includes three contributions.

First, we propose an encoder with attention mechanism
to extract image feature and design a view-pooling layer to
combine the features from multiple views. This could harvest
elaborate information from multi-view images. In the mean
time, the attention module helps the encoder to extract spe-
cific image feature, which is essential for predicting accurate
human pose and shape parameters.

Second, we propose a 3D regression module to estimate
shape and pose parameters from combined image feature,
during which we design a novel descriptor of the pose struc-
ture. This module explores the constraints of the inner cor-
relations of body and the original 3D space, therefore could
achieve satisfying results.

In addition, we implement a discriminator in the training
process to act as pose and shape priors. This could boost the
performance of our framework to generate accurate 3D hu-
man model in a generative-adversarial way.

Our model is trained end-to-end and involves no optimiza-
tion during test time, which runs in real-time and achieves
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Fig. 1. Overview of our framework. Each image in the multi-view input is passed through the (a) MVR (Multi-view ResNet)
separately, aggregated at the view-pooling layer, then sent to the (b) 3D regression module to estimate pose θ and shape β.
Then we use (c) mesh generator to build 3D human model and get the predicted joints. We calculate losses on the geometric
constraints Llimb and Ljoint which are back propagated through the entire model. The (d) discriminator acts as the prior,
forcing the model to generate accurate 3D parameters.

state-of-the-art performance on benchmark datasets.

2. METHOD

2.1. SMPL Model

Our method builds 3D human model through a skinned
vertex based model, SMPL [5]. SMPL can be described as
a function M(θ, β) that takes pose θ and shape β as inputs
and produces a weighted triangulated mesh with 6890 vertices
and 13776 triangles. The pose θ ∈ R3K+1 is the axis angle
representation of the relative 3D rotation of theK = 23 joints
and one global rotation of the human. The shape β ∈ R10

is the first 10 PCA coefficients of the shape space, learned
from thousands of registered scans. In order to build a SMPL
model, first we apply shape and pose dependent deformations
Bs(β) and Bp(θ) to the template T with zero pose and shape;
then we use the LBS skinning function W to build the final
triangulated surface with the deformed vertices T, keyjoints
J (β), pose θ and the skinning weightsW

T(β, θ) = T + Bs(β) + Bp(θ), (1)

M(β, θ) = W(T(β, θ),J (β), θ,W). (2)
Through the above functions we could easily generate

person-specific 3D mesh given the corresponding pose and
shape. Also SMPL is fully differentiable, therefore we can
employ SMPL as part of our deep learning framework and
regard this mesh generator as a neural network with fixed
parameters.

2.2. Multi-view ResNet with Attention Module

In this section, we explain how to encode image features
from multi-view images. As illustrated in Fig.1, the input
of this module is a series of multi-view images. We design
a multi-view CNN based on ResNet, abbreviated as MVR,
on top of the 3D regression module in section 2.3. In order
to exclude the interference of the background and make the

model focus on human-related areas in the image, inspired
by [14], we adopt the attention mechanism in our MVR. Giv-
en an intermediate feature map F ∈ RC×H×W as input, the
attention module infers attention maps Mc ∈ RC×1×1 and
Ms ∈ R1×H×W sequentially along the channel and spatial
dimensions. Then the output of the attention module are mul-
tiplied to the input feature according to the following func-
tions F′ = Mc(F)⊗ F, (3)

F′′ = Ms(F
′)⊗ F′, (4)

where the ⊗ means element-wise multiplication. F′ is the in-
termediate feature after the original image feature multiplies
the channel attention map and F′′ is the final refined feature
with the spatial attention map multiplied with F′. Similar to
[14], in the MVR, we put this attention module in every Res-
Block in ResNet.

Each image in a multi-view batch is first passed through
the MVR separately, then aggregated at the view-pooling lay-
er. All branches in the MVR share the same parameters.
View-pooling layer is similar to max-pooling layer but the
pooling operations are carried out in different dimensions. We
perform element-wise maximum operation across all views at
the view-pooling layer and get the combined multi-view im-
age feature Φmv .

2.3. 3D Regression

The goal of our 3D regression module is to process the
combined image feature Φmv and predict the pose and shape
parameters Θ ∈ R82, including θ ∈ R72 and β ∈ R10. Then
we use Θ to build the SMPL model as illustrated in section
2.1. Since θ and β are high dimensional vectors, directly re-
gressing them through CNN is dificult. Our work adopts the
iterative error feedback loop [9, 15] to progressively regress
the residual ∆Θt according to the previous estimate Θt. Then
the current parameter is updated by adding the residual to the
previous estimate Θt+1 = Θt + ∆Θt. The 3D regression
module takes the current parameters Θt+1 and the combined
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image feature Φmv as inputs, forming a close loop to iterative-
ly regress the pose and shape parameters. During the training
process, we only update the weights of the first iteration and
other iterations share the same parameters with the first one.

This module is trained with two kinds of supervision. The
first is the joints supervision. As mentioned in section 2.1,
given the pose and shape parameters [θ, β], we could obtain
the predicted 3D joints Jpred ∈ R3N through SMPL. Then
we calculate the euclidian distance between the ground truth
and predicted result

Ljoint = ‖(Jgt − Jpred)‖22. (5)
Since human pose has high degree of freedom, estimating

3D pose and shape simply with the joints position constraint
is unreliable. Model may predict accurate 3D keyjoints with-
out capturing correct limb orientation. We have learned that
human pose is a kinematic skeleton, and in this kinematic
structure, vectors directing from parent joints to child joints
could represent limbs, such as legs and arms. In order to ex-
plore the inner correlations of human joints, we bring up a
novel geometric supervision of body pose. For the kth joint,
its associated limb is defined as a vector directing from parent
jparent(k) to its child jk

Bk = jparent(k) − jk, (6)
where parent(k) returns the index of parent joint for the kth
joint. The joints jk ∈ J are defined in the global coordinate
and we define the pelvis as the root joint. Estimating the pose
using limb representation could express the geometric struc-
ture more sufficiently than joints position. Besides, the limbs
are more stable than joints and easier to learn. limbs can be
learned by minimizing the loss function

Llimb =

K∑
k=1

‖B̃gtk − B̃k‖1, (7)

where the B̃ means the normalized limb, B̃k = Bk

‖Bk‖22
.

2.4. Discriminator

The estimation of human shape has always been a tough
problem since there is no label for human shape in the exist-
ing image datasets. Since human shape is highly non-rigid,
the regression module may generate unrealistic parameters,
such as extreme body shape and unnatural bending of joints.
In real life, given an image and its corresponding predicted
pose, people could easily tell whether the estimation is correct
or not based on the perception of image and pose correspon-
dence and the knowledge of human structure. This perception
ability to distinguish right from wrong could be learned by
neural network, using adversarial learning.

Based on the above observation, similar to [9, 16], we pro-
pose an adversarial learning paradigm in the training process
to help the 3D regression module to generate accurate 3D pa-
rameters. The discriminator aims at telling ground-truth 3D
pose and shape from predicted ones. We train K + 2 discrim-
inators, K for K joints, one for the global rotation and one

for shape. The loss function for each discriminator is
LDi

= Lcls(Di(Θ), 1) + Lcls(D(G(I)), 0), (8)
where Di(Θ) and D(G(I)) represent the outputs of the dis-
criminators for ground-truth parameters from 3D dataset-
s and the predicted parameters respectively. Each dis-
criminator outputs value between [0, 1], representing the
possibility that the parameters come from the real data.
Lcls is the binary entropy loss defined as Lcls(ŷ, y) =
−(y log(ŷ)) + (1 − y) log(1 − ŷ). Intuitively, LD is trained
to enforce the discriminator D to classify the ground-truth
parameters as 1 and the predictions as 0.

On the contrary, the 3D regression module, here consid-
ered as the generatorG, is trained through the following func-
tion to predict indistinguishable shape and pose to fool the
discriminator,

LG = Lcls(D(G(I)), 1). (9)
During the training process, we train the generator and

discriminator jointly.

3. EVALUATION

3.1. Implementation Details and Datasets

Implementation details. For MVR, we adopt the refined
ResNet brought up in [14] with view pooling layer mentioned
in section 2.2, obtaining the combined feature Φmv ∈ R2048.
The 3D regression module consists of two fully-connected
layers with 1024 neurons with dropout layer in between, fol-
lowed by a final layer of 82D neurons. In our experiment,
the regression module has three iterations. The discriminator
for shape is three fully-connected layers with 10, 5, 1 neurons.
For pose, θ is first transformed to 3×3 matrices via Rodriguez
formula. Then each rotation matrix is passed through two
convolutional layers with kernel size of 1 and output channel
of 32, followed by a fully-connected layer with 1 neuron. The
learning rates for the generator and discriminator are 10−5

and 10−4 respectively. We use the Adam optimizer and train
the model for 50 epochs in Tensorflow [17].

Datasets. For multi-view image datasets, we adopt two
popular datasets, Huamn3.6M [18] and MPI-INF-3DHP [19].
For 3D pose and shape dataset used to train the discriminator,
we adopt the one brought up in [9], which is generated by
applying MoSh [20] to MoCap datasets.

3.2. Experimental Result on Human3.6M

Human3.6M is one of the largest datasets for 3D human
pose estimation. We follow the standard evaluation protocol
on Human3.6M, using subjects 1, 5, 6, 7, 8 for training and
subjects 9 and 11 for testing. We adopt the Mean Per Joint
Position Error (MPJPE) to evaluate the pose accuracy. In or-
der to remove the global misalignments, we also use PMPJPE
as the evaluation metric, which is the aligned joint error be-
tween the predicted results and ground truth using Procrustes
alignment.
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Fig. 2. Qualitative results on Human3.6M and MPI-INF-3DHP. The first row shows results on Human3.6M. The second
row shows results on MPI-INF-3DHP. Our model could generate accurate 3D models even though the MPI-INF-3DHP isn’t
used for training.

Table 1. Results on Human3.6M
Method MPJPE PMPJPE Runtime

Bogo et al.[7] – 82.33 ∼ 1 min
Kanazawa et al.[9] 87.97 58.1 0.04 sec
Pavlakos et al.[10] 71.9 51.23 –
Omran et al.[11] 78.99 – –
Rhodin et al.[3] 66.8 51.6 –
Yang et al.[16] 58.6 – –
Zhou et al.[21] 64.9 – –

Ours-1vs 82.33 65.41 ∼0.03 sec
Ours-2vs 76.32 58.12 ∼0.03 sec
Ours-3vs 68.87 58.57 ∼0.03 sec
Ours-4vs 62.49 56.6 ∼0.03 sec

* MPJPE and PMPJPE estimation loss in mm. The results are taken
from respective papers.

The results on Human3.6M are reported in table 1. Ours-
1vs, Ours-2vs, Ours-3vs, Ours-4vs represent the model
trained with 1, 2, 3, 4 views of images respectively. We
notice that with the increase of the number of views, the
joint error decreases. This proves that our multi-view method
could boost the performance of pose and shape estimation.
Our method outperforms the work of Bogo et al.[7], which is
a typical traditional method, in both joint error and runtime.
We achieve better results than the state-of-the-art method-
s which estimate both shape and pose parameters, such as
[11, 10, 9]. Besides, our method achieves comparable re-
sults with methods which only predict 3D pose. We notice
that even trained with only 1 view, our method still achieves
better results than [9]. This proves the effectiveness of our
framework which adopts attention mechanism and explores
the body geometry sufficiently.

3.3. Experimental Result on MPI-INF-3DHP

In order to demonstrate how our method generalizes to
outdoor scenes and different viewpoints, we evaluate our
method on the recent MPI-INF-3DHP dataset, using model
trained on Human3.6M. Since the 3D labels of this dataset

Table 2. Generalization results on MPI-INF-3DHP
Method PCK AUC MPJPE

Mehta et al.[19] 76.6 40.4 124.7
Kanazawa et al.[9] 72.9 36.5 124.2

Yang et al.[16] 69.0 32.0 –
Rhodin et al.[3] 66.9 – –

Ours-4vs 67.0 31.9 139.48
* Accuracy is higher with higher PCK and AUC and lower

MPJPE. The results are taken from respective papers.

contain certain noise, follow the common practice, besides
MPJPE, we use the Percentage of Correct Keypoints (PCK-
h@0.5) and Area Under the Curve (AUC) [22] as the evalua-
tion metrics.

The results are shown in table 2. Even though this dataset
isn’t used for training, our best model Ours-4vs achieves 67.0
and 31.9 in PCK and AUC respectively, which is compa-
rable with the state-of-the-art methods [16, 9]. This shows
our method is robust and strong enough towards outdoor
scenes and different viewpoints. The reason why our method
achieves good generalization to different datasets is that, our
model is trained to pay attention towards the human geom-
etry in the images and is robust to the diversification of the
background. Fig.2 shows the qualitative results on MPI-INF-
3DHP and Human3.6M.

4. CONCLUSION

In this paper, we make three contributions towards a ful-
l estimation of 3D human. We adopt a novel view-pooling
method with attention mechanism to encode multi-view im-
ages, providing rich information for human pose and shape
estimation without strict camera calibration parameters. We
also bring up a novel geometric constraint in the 3D regres-
sion module. During the training, we adopt a generative-
adversarial way to guide the 3D regression module to esti-
mate accurate human pose and shape parameters. Our method
achieves comparable results with the state-of-the-art method-
s.
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